Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey

نویسندگان

  • Melek Acar Boyacioglu
  • Yakup Kara
  • Ömer Kaan Baykan
چکیده

Bank failures threaten the economic system as a whole. Therefore, predicting bank financial failures is crucial to prevent and/or lessen the incoming negative effects on the economic system. This is originally a classification problem to categorize banks as healthy or nonhealthy ones. This study aims to apply various neural network techniques, support vector machines and multivariate statistical methods to the bank failure prediction problem in a Turkish case, and to present a comprehensive computational comparison of the classification performances of the techniques tested. Twenty financial ratios with six feature groups including capital adequacy, asset quality, management quality, earnings, liquidity and sensitivity to market risk (CAMELS) are selected as predictor variables in the study. Four different data sets with different characteristics are developed using official financial data to improve the prediction performance. Each data set is also divided into training and validation sets. In the category of neural networks, four different architectures namely multi-layer perceptron, competitive learning, self-organizing map and learning vector quantization are employed. The multivariate statistical methods; multivariate discriminant analysis, k-means cluster analysis and logistic regression analysis are tested. Experimental results are evaluated with respect to the correct accuracy performance of techniques. Results show that multi-layer perceptron and learning vector quantization can be considered as the most successful models in predicting the financial failure of banks. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Bank Failure Prediction Performance of Neural Networks and Support Vector Machines: the Turkish Case

Experience from the banking crises during the past two decades suggest that advanced prediction models are needed for helping prevent bank failures. This paper compares the ability of artificial neural networks and support vector machines in predicting bank failures. Although artificial neural networks have widely been applied complex problems in business, the literature utilizing support vecto...

متن کامل

A Guide to Deposit Insurance Reform

Deposit insurance was introduced in the United States during the Great Depression primarily to promote financial stability. Stability is enhanced because deposit insurance reduces the likelihood of a bank run. During its first four decades, deposit insurance appeared to work well as few banks failed. But in the 1980s, a wave of financial troubles in the banking and thrift industry exposed an un...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Modeling of Banks ‌Bankruptcy in Iran (Multivariate Statistical Analysis)

In this paper we construct a modeling for detection of banks which are experiencing serious problems. Sample and variable set of the study contains 30 banks of Iran during 2006-2014 and their financial ratios. Well known multivariate statistical technique (principal component analysis) was used to explore the basic financial characteristics of the banks, and discriminant Logit and Probit models ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009